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1 Preliminaries

Metric tensor:
gµν = gµν = diag(1,−1,−1,−1) (1)

Satisfying
gµνg

νρ = δρµ (2)

The relativistic line is given by

ds2 = gµνdx
µdxν = (dx0)2 − dx⃗ · dx⃗, (3)

with
xµ = (x0, x⃗), xµ = gµνx

ν = (x0,−x⃗) (4)

p · x = gµνp
µxν = p0x0 − p⃗ · x⃗ (5)

Massive particle:
p2 = pµpµ = E2 − |p⃗|2 = m2, (6)

where the 4-momentum is defined as

pµ = m
dxµ

ds
(7)

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0
, ∇⃗

)
(8)

2 Classical field theory

2.1 Lagrangian formalism

Let a Lagrangian density be the function of a field ϕ and its derivative ∂muϕ. Then, the
action is given by

S =

∫
dtL =

∫
d4xL(ϕ, ∂µϕ). (9)

The principle of least action states that whenever a system evolves from one configuration
to another between times t1 and t2, it does so along a path in which S is minimum:

δS = 0 (10)

δS =

∫
d4x

[
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

]
(11)

=

∫
d4x

[
∂L
∂ϕ

δϕ− ∂µ

(
∂L

∂(∂µϕ)

)
δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)]
. (12)

Note that the last term is a total derivative and it vanishes for any δϕ (it can be regarded
as a surface integral over the boundary of the 4d space-time). Since the initial and final
field configurations are assumed to be given, δϕ is zero at both the temporal beginning and
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end of such a region. If we restrict ourselves to deformations δϕ that vanish on the spatial
boundary as well, then the surface term is zero. Therefore, and requiring δϕ = 0 for all
such paths, we have the Euler-Lagrange equation of motion for the field,

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0 (13)

2.2 Lorentz invariance

Consider a Lorentz transformation

xµ → x′µ = Λµ
νx

ν , (14)

where Λµ
ν satisfies

Λµ
σg

στΛν
τ = gµν . (15)

As an example, consider a rotation by θ around the x3-axis and a boost by v along the
x1-axis. Their respective Lorentz transformations are

Λµ
ν =


1 0 0 0
0 − cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 , Λµ
ν =


γ −γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

 , (16)

with γ = (1− v2)−1/2.
Now let’s consider a Lorentz transformation x → Λx, so that the field transforms as

ϕ(x) → ϕ′(x) = ϕ(Λ−1x). (17)

If the field ϕ(x) solves the equations of motion of a Lorentz invariant theory, then ϕ(Λ−1x)
also does. We can ensure that such a property holds by requiring that the action is Lorentz
invariant.

Example: Klein-Gordon equation
Consider a real scalar field transforming as ϕ(x) → ϕ′(x) = ϕ(Λ−1x), which implies that

the derivative of the field transform as

(∂µϕ)(x) → (Λ−1)νµ(∂νϕ)y, (18)

where y ≡ Λ−1x. This means that the derivative term in the Lagrangian transforms as

L(x) = ∂µϕ(x)∂
νϕ(x) → (Λ−1)ρµ(∂ρϕ)(y)(Λ

−1)νσ(∂
σϕ)(y) (19)

= (∂ρϕ)(y)(∂
νϕ)(y) = L(y). (20)

The potential terms transform in the same way ϕ(x)2 → ϕ(y)2. Putting all of them together,
we find that the action is invariant under a Lorentz transformation:

S =

∫
d4x L(x) →

∫
d4y L(y) = S. (21)

2.3 Noether’s theorem

Every continuous symmetry of the Lagrangian gives rise to a conserved current jµ(x) such
that

∂µj
µ = 0 ∂tj

0 +∇ · j⃗ = 0 (22)

A conserved current implies a conversed charge Q defined as

Q =

∫ 3

R
j0, (23)
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which we can see that

dQ

dt
=

∫
R3

d3x∂tj
0 = −

∫
d3x∇ · j⃗ = 0 (24)

assuming that j → 0 as x → ∞.
Whenever we have a continuous symmetry we may work infinitesimally, we consider a

transformation
δϕ(x) = X(ϕ), (25)

is a symmetry if the Lagrangian changes by a derivative δL = ∂µF
µ, for some function

Fµ(ϕ). Then, the Lagrangian variation reads

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ) (26)

=

[
∂ϕL − ∂µ

∂L
∂(∂µϕ)

]
δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
, (27)

∂µ(
∂L

∂(∂µϕ)
δϕ) = ∂µ(

∂L

∂(∂µϕ)
)δϕ+

∂L

∂(∂µϕ)
∂µ(δϕ) (28)

when the eq. of motion are satisfied, we are left with

δL = ∂µ

(
∂L

∂(∂µϕ)
X(ϕ)

)
= ∂µF

µ(ϕ) (29)

∂µ

(
∂L

∂(∂µϕ)
X(ϕ)− Fµ(ϕ)

)
= 0 (30)

(
∂L

∂(∂µϕ)
X(ϕ)− Fµ(ϕ)

)
= jµ (31)

Example Consider an infinitesimal translation xν → xν − ϵν . For the field it means that
ϕ(x) → ϕ(x) + ϵν∂νϕ(x)

The Lagrangian transforms as

L(x) → L(x) + ϵν∂νL(x). (32)

Since the change in the Lagrangian is a total derivative, we may invoke Noether’s the-
orem which will provide four conserved currents (jµ)ν , one for each of the translations,
ν = 0, 1, 2, 3.

(jµ)ν =
∂L

∂(∂µϕ)
∂νϕ− δµνL ≡ Tµν , (33)

is called the energy-momentum tensor, which satisfies

∂µT
µν = 0. (34)

The four converse quantities are

E =

∫
d3xT 00, P i =

∫
d3xT 0i. (35)

Example of the Energy-momentum tensor
Consider the simple scalar field with the Lagrangian

L =
1

2
∂µ∂

µϕ− 1

2
m2ϕ2, (36)
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then

Tµ
ν =

∂L
∂(∂µϕ)

∂νϕ− δµνL (37)

=
1

2
∂µϕ∂

µϕ− δµνL (38)

Tµν = gσνTµ
ν =

1

2
∂µϕ∂νϕ− gµνL. (39)

From the eq. of motion it is possible to verify that ∂µT
µν = 0, which give rise the following

conserved quantities

E =
1

2

∫
d3xϕ̇2 + (∇ϕ)2 +m2ϕ2, P =

∫
d3xϕ̇∂iϕ. (40)

2.4 Hamiltonian formulation

The Lagrangian formulation of field theory is particularly suited for relativistic dynamics
because all expressions are Lorentz invariant. Hamiltonian formulation provides an easy
path towards the transition to quantum mechanics.

Recall that for a system we can define the conjugate momentum

p ≡ ∂L
∂q̇

, (41)

where
q̇ = ∂tq, (42)

for each dynamical variable q. The Hamiltonian is

H =
∑

pq̇ − L. (43)

Generalization for a field:

Π(x) ≡ ∂L
∂ϕ̇(x)

, (44)

momentum density conjugate of the field ϕ(x). The Hamiltonian reads

H =

∫
d3x(Π(x)ϕ̇(x)− L). (45)

Consider our simple scalar field with Lagrangian

L =
1

2
∂µ∂

µϕ− 1

2
m2ϕ2, (46)

we have that Π(x) = ϕ̇, and thence the Hamiltonian is given by

H =
1

2

∫
d3x(ϕ̇2 + (∇ϕ)2 +m2ϕ2). (47)

3 Canonical quantization

3.1 The Klein-Gordon field as harmonic oscillators

We consider a real Klein-Gordon field, and in order to quantize it, we promote ϕ and Π to
operators, and we impose suitable commutation relations:

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0. (48)
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For a continuous system the generalization is quite natural, since Π(x⃗) is the momentum
density, we get a Dirac delta instead of a Kronecker delta

[phi(x),Π(y)] = iδ(3)(x− y), [ϕ(x), ϕ(y)] = [Π(x),Π(y)] = 0. (49)

The Hamiltonian, which is a function of ϕ and Π, also becomes an operator. In order to
find the spectrum from the Hamiltonian, let’s begin by writing the field in Fourier space:

ϕ(x, t) =

∫
d3p

(2π)3
eipxϕ(p, t). (50)

The Klein-Gordon equation becomes

(∂2
t + p2 +m2)ϕ(p, t) = 0. (51)

The above equation is the eq. of motion for a harmonic oscillator with frequency ω2
p =

p2+m2. Let’s recall how to find the spectrum of HO. We firstly define the ladder operators

ϕ =
1√
2ω

(a+ a†), p = −i

√
ω

2
(a− a†), (52)

where the Hamiltonian is
H = p2/2 + ω2ϕ2/2. (53)

From [ϕ, p] = i, we have that [a, a†] = 1. With these relations, we can rewrite the Hamilto-
nian as

H = ω(a†a+ 1/2). (54)

The zero-point state |0⟩ is such that a|0⟩ = 0 is an eigenstate of H with eigenvalue ω/2.
Furthermore, with the commutators [H, a†] = ωa†, [H, a],−ωa, it is possible to verify that
the states

|n⟩ ≡ (a†)|0⟩, (55)

they are eigenstates of H with eigenvalues (n+ 1/2)ω.
With that, we can proceed to inspect the spectrum of the KG Hamiltonian within

an analogous formulation. Note: each Fourier mode of the field will be treated as an
independent oscillator, with its own a and a†. Analogously we have that

ϕ(x) =

∫
d3p

(2π)3
1√
2ωp

(ape
ipx + a†e−ipx), (56)

Π(x) =

∫
d3p

(2π)3

√
wp

2
(ape

ipx − a†e−ipx). (57)

One can show that the commutation relation [a, a†] = 1 becomes [ap, a
†q] = (2π)3δ(3)(p−q),

and that

[ϕ(x),Π(y)] = − i

2

∫
d3pd3q

(2π)6

√
ωq

ωp
([a†−p, aq]− [ap, a

†
−q])e

i(px+qy) = iδ(3)(x− y). (58)

With those, we can express the KG Hamiltonian in terms of the ladder operators.
Starting with

H =
1

2

∫
d3x(Π2 + (∇ϕ)2 +m2ϕ2), (59)

and substituting the expressions for the operators, it yields

H =

∫
d3x

∫
d3pd3q

(2π)6
ei(p+q)x

[
−
√
ωpωq

4
(ap − a†−p)(aq − a † −q) +

m2 − p⃗ · q⃗
4
√
ωpωq

(ap + a†−p)(aq + a†−q)

]
(60)

=

∫
d3p

(2π)3
ωp

(
a†pap +

1

2
[ap, a

†
p]

)
, (61)
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where [ap, a
†
p] = (2π3)δ(3)(0). We observe that in the above expression the second term

if proportional to δ(3)(0), which is infinite. It is regarded as the sum over all modes of
zero-point energies. Although, this infinite term appears in the equations, it does not have
any implication in real life, once in experiments there are no infinite measures, it is only
possible to measure the difference between energy levels and the ground state. Let’s take a
closer look at the vacuum ap|0⟩ = 0. Then, the ground state energy comes from the second
term

H|0⟩ = E0|0⟩ =
(∫

d3p ωp δ
(3)(0)

)
|0⟩ = ∞|0⟩. (62)

This infinite only appears because space is infinitely large (infra-red divergence). Instead
of that, we can consider inserting our theory inside a volume V ,

(2π)3δ(3)(0) = lim
V→∞

∫
V
d3x eixp

∣∣∣
p=0

= V. (63)

Instead of calculating the total energy, we can evaluate the energy density

E0

V
=

1

2

∫
d3x

(2π)3
ωp, (64)

observe that this term is still infinite, it is recognized as the sum of the ground state energies
for each HO. But as p → ∞ E0/V → ∞, this is a high-frequency infinity known as ultra-
violet divergence.

In a more practical way, we can redefine the Hamiltonian by subtracting the problematic
term:

H =

∫
d3x

(2π)3
ωp⃗a

†
p⃗ap⃗, (65)

so that
H|0⟩ = 0. (66)

Example: The Camisir effect Consider a box of size L and insert two plates separated
separated by a distance d ≪ L in the x-direction. The plates impose ϕ(x) = 0 at the
position of the plates, and periodic boundary conditions such that ϕ(x⃗) = ϕ(x⃗+Ln⃗), where
n⃗ = (1, 0, 0). The momentum of the field inside the plates is quantized as

p⃗ = (nπ/d, py, pz), n ∈ Z. (67)

We want to evaluate the ground state energy between the plates for a scalr field:

E(d) =

∞∑
n=1

∫
dpy dpz

√(nπ
2

)2
+ p2y + p2z (68)

We see that E is infinite, because it comes from arbitrarily high momentum modes.
This shouldn’t reflect real occurrences in experiments. Mathematically we want to consider
only modes with momentum p ≫ 1/a, for some length scale a ≪ d, known as the ultraviolet
cut-off. One way of doing this is inserting an exponential decaying term into the eqs.

E(d) =
∞∑
n=1

∫
dpydpz

√(nπ
2

)2
+ p2y + p2ze

−a((nπ/d)2+p2y+p2z)
1/2

, (69)

which for a → 0 we simply recover the full infinite expression. In order to simplify things,
let’s consider 1d case:

E(d) =
π

2d

∞∑
n=1

n → π

2d

∞∑
n=1

ne−anπ/d (70)

= −1

2
∂a

∑
n

e−anπ/d = −1

2
∂a

(
1

1− eaπ/d

)
(71)

=
π

2d

eaπ/d

(eaπ/d − 1)2
(72)
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Considering a ≪ d, we have that

E(d) =
d

2πa2
− π

24d
+O(a2). (73)

The full energy inside the box is calculated as

E(d) + E(L− d) =
L

2πa2
− π

24

(
1

d
− 1

L− d

)
+O(a2). (74)

The force is provided by

∂dE =
π

24d2
+ · · · , (75)

The important point is that as a → 0, and L → ∞, the force remains finite.
Coming back to the spectrum of the theory all other energy eigenstates can be built by

acting with the creation operator over the vacuum. Arbitrary state

a†pa
†
q · · · |0⟩, (76)

which is an eigenstate of the Hamiltonian with energy ωp + ωq + · · · . Let’s do some inter-
pretation for these states.

From

P i =

∫
T 0id3x =

∫
Π∂iϕd

3x, (77)

total momentum operator of the field. It reads

P⃗ = −
∫

d3xΠ(x)∇ϕ(x) =

∫
d3x

(2π)3
p⃗a†pap. (78)

The operator a†p creates momentum p⃗ and energy ωp =
√

p2 +m2. Similarly, the state (76)
has momentum p+ q + · · · .

As [a†p, a
†
q] = 0, we have that that a†pa

†
q|0⟩ = a†qa

†
p|0⟩, which means interchange of parti-

cles without any cost/sign. Therefore, we conclude that the KG field obeys Bose-Einstein
statistics.

Now, let’s consider the interpretation of the state ϕ(x)|0⟩. From (56), we have that

ϕ(x)|0⟩ =
∫

d3p

(2π)3
1

2Ep
|p⟩, (79)

and that

⟨0|ϕ(x)|p⟩ = ⟨0|
∫

d3p′

(2π)3
1√
2E′

p

(ap′e
ip′x + c.c.)

√
2Epa

†
p|0⟩ = eipx. (80)

This means that the operator, acting over the vacuum, creates a particle at position x.
Also, it is possible to consider this as the position-space representation of a single particle
wavefunction of the state |p⟩, similarly to nonrelativistic QM we have that ⟨x|p⟩ ∝ eipx is
the wavefunction of the state |p⟩.

Let us consider the issue of proper, relativistic normalization. We define the vacuum
normalization as ⟨0|0⟩ = 1, and then the one particle state |p⃗⟩ = a†p⃗|0⟩, satisfying

⟨p⃗|q⃗⟩ = (2π)3δ(3)(p⃗− q⃗). (81)

Question: Is this quantity Lorentz invariant?
Let’s consider the Lorentz transformation

pµ → (p′)µ = Λµ
νp

ν , (82)
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such that the 3-vector transforms as p⃗ → p⃗′. In QM, we like relating states by a unitary
transformation

|p⃗⟩ → |p⃗′⟩ = U(Λ)|p⃗⟩. (83)

This would imply that the normalization of |p⃗⟩ and |p⃗′⟩ are the same whenever they are
related by a Lorentz transformation. In general we have that |p⃗⟩ → |p⃗′⟩ = λ(p⃗, p⃗′)|p⃗′⟩, for
some unknown function λ. On the other hand, let us take a closer look at a quantity that
we know that is Lorentz invariant.

Consider the identity operator

1 =

∫
d3p

(2π)3
|p⃗⟩⟨p⃗| (84)

Question: are d3p
(2π)3

and |p⃗⟩⟨p⃗| Lorentz invariant?

Claim: The Lorentz invariant measure is given by∫
d3p

2Ep
. (85)

Proof: As
∫
d4p is Lorentz invariant, the relativistic dispersion relation for a massive

particle pµp
µ = m2 → E2

p = p2 +m2 = p0 is also Lorentz invariant. Because of that, the
following combination must be Lorentz invariant∫

d4xδ(p20 − p⃗2 −m2) =

∫
d3p

2p0
. (86)

Now, the Lorentz invariant δ-function for 3-vectors is 2Ep⃗δ
(3)(p⃗− q⃗), because∫

d3p

2Ep
2Epδ

(3)(p⃗− q⃗) = 1 (87)

Finally, we have that the relativistically normalized momentum states are

|p⟩ ≡
√

2Ep|p⃗⟩ =
√
2Epa

†
p⃗|0⟩. (88)

The state |p⟩ differs from |p⃗⟩ by a factor of
√

2Ep. They satisfy

⟨p|q⟩ = (2π)32Ep⃗δ
(3)(p⃗− q⃗), (89)

and the identify on one-particle state

1 =

∫
d3p

(2π)3
1

2Ep⃗
|p⟩⟨q|. (90)

3.2 Complex scalar fields

Let us consider a Lagrangian of a complex scalar field Ψ(x)

L = ∂µΨ
∗∂µΨ−M2Ψ∗Ψ. (91)

Is worth to note that we could write the complex field in terms of real scalar ones as
Ψ = (ϕ1 + iϕ2)/

√
2, and then we could recover the Lagrangian for a real scalar field. For

the complex scalar field, the eqs. of motion are

∂µ∂
µΨ+M2Ψ = 0 (92)

∂µ∂
µΨ∗ +M2Ψ∗ = 0. (93)
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The analogous expressions for field operator reads

Ψ =

∫
d3p

(2π)3
1√
2Ep

(
bpe

ipx + c†pe
−ipx

)
(94)

Ψ∗ =

∫
d3p

(2π)3
1√
2Ep

(
b†pe

−ipx + cpe
ipx

)
(95)

This follows because, since the classical field is not real, its quantum correspondent is
not hermitian, that is the reason why we have two different operators b and c in the above
expressions. Recalling that the classical field momentum is Π = ∂Ψ̇L = Ψ̇∗, its quantum
version is

Π = i

∫
d3p

(2π)3

√
Ep

2

(
b†pe

−ipx − cpe
ipx

)
(96)

Π† = −i

∫
d3p

(2π)3

√
Ep

2

(
bpe

ipx − c†pe
−ipx

)
, (97)

with commutation relations given by [Ψ(x),Π(y)] = iδ(3)(x − y) and all the other usual
commutation relations. From those, one can derive the commutation relations for the
operators b and c:

[bp, b
†
q] = (2π)3δ(3)(p⃗− q⃗) (98)

[cp, c
†
q] = (2π)3δ(3)(p⃗− q⃗), (99)

and all the usual others that vanish.
The quantization of a complex scalar field gives rise to two different operators, They can

interpreted as creating two types of particle with same mass: particles and anti-particles.
On the other hand, a real scalar field allow for only one kind of particle: meaning that the
particle is its own anti-particle. Recalling that the theory has a classical conversed charge

Q = i

∫
d3x(Ψ̇∗Ψ−Ψ∗Ψ̇) = i

∫
d3x(ΠΨ−Ψ∗Π∗), (100)

which becomes

Q =

∫
d3p

(2π)3
(c†pcp − b†pbp) = Nc −Nb, (101)

which means that Q represents the difference between particles and antiparticles, and
[H,Q] = 0, ensuring that Q is conversed.

3.2.1 The Klein-Gordon field in space and time

Here we will consider the KG field in the Heisenberg picture, which will provide us with a
better framework to deal with time-dependent quantities. In the Heisenberg pictures, the
operators evolve in time as

O = eiHtOe−iHt, (102)

obeying the eq. of motion
i∂tO = [O, H]. (103)
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The Heisenberg eqs. of motion of ϕ and Π read

i∂tϕ(x, t) = [ϕ(x, t), 1/2

∫
d3x′(Π2(x′, t) + (∇ϕ(x t))2 +m2ϕ2(x′, t))] (104)

=

∫
d3x′iδ(3)(x− x′)Π(x′, t) = iΠ(x, t); (105)

i∂tΠ(x, t) = [Π(x, t), 1/2

∫
d3x′(Π2(x′, t) + (∇ϕ(x t))2 +m2ϕ2(x′, t))] (106)

=

∫
d3x′(−iδ(3)(x− x′)(m2 −∇2)ϕ(x′, t)) = −i(m2 −∇2)ϕ(x, t). (107)

(108)

By making using of both eqs. of motion, we simply recover the KG equation

∂2
t ϕ = (∇2 −m2)ϕ. (109)

Now, by using the commutation relations [H, ap] = −Epap and [H, a†p] = Epa
†
p. We

have that a and a† follow the time evolution

eiHtape
−iHt = e−iEptap (110)

eiHta†pe
−iHt = eiEpta†p. (111)

From the expression for the operator ϕ(x, t) and its Heisenberg time evolution, we have
that

ϕ(x, t) =

∫
d3p

(2π)3
1√
2Ep

(ape
−ip·x + a†pe

ip·x), (112)

p · x = Ep⃗t − p⃗x⃗. It is possible to check that ϕ(x, t) satisfies the KG equation. Likewise,
Π(x, t) can be derived from Π(x, t) = ∂tϕ(x, t). In analogy to (113), it is possible to write

e−iP⃗ .x⃗ap⃗e
iP⃗ .x⃗ = eip⃗.x⃗ap⃗ (113)

eiP⃗ .x⃗a†p⃗e
−iP⃗ .x⃗ = e−ip⃗.x⃗ap⃗†, (114)

and thence ϕ(x) = eiPxϕ(0)e−iPx, where Px = Ht − p⃗x⃗. Note on notation: P⃗ is the
momentum operator, whose eigenvalue is the total momentum of the system. Whereas,
p⃗ is the momentum of a single Fourier mode of the field, that can be interpreted as the
momentum of a single particle in the respective mode.

4 Causality

Consider the amplitude for a free particle to propagate from x0 to x:

U(t) = ⟨x|e−iHt|x0⟩. (115)

Nonrelativistic case: E = p2/2m.

U(t) = ⟨x|e−itp2/2m|x0⟩ (116)

=

∫
d3p⟨x|e−itp2/2m|p⟩⟨p|x0⟩ (117)

=

∫
d3p

(2π)3
e−ip2/2mteip(x−x0) (118)

=
( m

2πit

)3/2
eim(x−x0)2/2t. (119)
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Note that for any x and t, U(t) ̸= 0. First thought: this may violate causality.
Relativistic case: E2 = p2 +m2

U(t) = ⟨x|e−it
√

p2+m2 |x0⟩ (120)

=

∫
d3p⟨x|e−it

√
p2+m2 |p⟩⟨p|x0⟩ (121)

=

∫
d3p

(2π)3
e−it

√
p2+m2

eip(x−x0) (122)

=
1

2π2(x− x0)

∫ ∞

0
dp p sin(p|x− x0|)e−it

√
p2+m2

. (123)

The integral can be evaluated in terms of Bessel functions. For the sake of the discussion,
let’s simply analyze its asymptotic behavior at x2 ≫ t2 (outside the light-cone). The
function px− t

√
p2 +m2 has a stationary point at p = imx/

√
x2 − t2. Plugging this value

for p in the time evolution we have that

U(t) ∼ e−m
√
x2−t2 . (124)

The propagation amplitude is nonzero outside the light-cone, thence causality if violated.
Let’s see how QFT solves this issue.

Let’s define the amplitude for a particle to propagate from y to x

⟨0|ϕ(x)ϕ(y)|0⟩ ≡ D(x− y). (125)

The only term from the ϕ operator that counts for this is ⟨0|ap⃗a†q⃗|0⟩ = (2π)3δ(3)(p⃗− q⃗), so
that

D(x− y) =

∫
d3p

(2π)3
1

2Ep
e−ip(x−y). (126)

Let’s evaluate the integral for different cases.

1. Time-like: {
x0 − y0 = t

x⃗− y⃗ = 0
(127)

D(x− y) =
1

2π2

∫ ∞

0
dp

p2

2
√
p2 +m2

e−it
√

p2+m2
(128)

=
1

4π2

∫ ∞

m
dE

√
E2 −m2e−iEt (129)

∼t→∞ e−imt. (130)

2. Space-like: {
x0 − y0 = 0

x⃗− y⃗ = r⃗
(131)

D(x− y) =

∫
d3p

(2π)3
1

2Ep
eip⃗.r⃗ (132)

=
1

4π2

∫ ∞

0
dp

p2

2Ep

eipr − e−ipr

ipr
(133)

= − i

8π2r

∫ +∞

−∞
dp

peipr√
p2 +m2

. (134)
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The integrand has branch cuts at ±im. Because of that we define ρ ≡ −ip, thus

D(x− y) =
1

4π2r

∫ ∞

m
dρ

ρe−ρr√
m2 − ρ2

∼r→∞ e−mr. (135)

Conclusion: we find again that the propagation amplitude out the light-cone is exponen-
tially decaying but nonzero!!! However, instead of asking whether particles can propagate
over space-like intervals, we should ask whether a measurement performed at one point can
affect a measurement at another point space-like separated. Measuring the field ϕ(x) by
evaluating the commutator [ϕ(x), ϕ(y)]: if it vanishes, one measurement cannot affect the
other. Moreover, if [ϕ(x), ϕ(y)] = 0 for (x− y)2 < 0, causality is generally preserved, since
commutators involving any function of ϕ(x), e.g. Π(x) = ∂tϕ(x), will also vanish.

Consider the commutator:

[ϕ(x), ϕ(y)] =

∫
d3p

(2π)3
1√
2Ep

∫
d3q

(2π)3
1√
2Eq

[(ap⃗ e
−ip.x + a†p⃗ e

ip.x), (aq⃗ e
−iq.y + a†q⃗ e

iq.y)]

(136)

=

∫
d3p

(2π)3
1

2Ep
(e−ip.(x−y) − eip.(x−y)) = D(x− y)−D(y − x). (137)

If we consider a space-like separation, (x−y)2 < 0, we can perform a Lorentz transformation
on the second term, (x−y) → −(x−y). Therefore, the commutator vanishes, and causality
is preserved! On the other hand, if (x − y)2 > 0, there is no Lorentz transformation that
takes (x − y) → −(x − y). In this scenario and for x⃗ − y⃗ = 0, the amplitude is nonzero
(∼ e−imt − eimt). This means that no measurement in the KG theory can affect another
one outside the light-cone.
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