

Riemann Zeta function

Riemann Zeta func: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$
for $\operatorname{Re}(s) > 1$.

The function converges absolutely and uniformly on compact subsets of $\{\operatorname{Re}(n) > 3\}$, as $|n^s| = n^{\operatorname{Re}(s)}$.

$\zeta(s)$ is holomorphic function

on $\operatorname{Re}(s) > 1$.

Connection with primes

Euler product formula: for $\operatorname{Re}(s) > 1$,

The infinite product $\prod_{p \in P} \left(1 - \frac{1}{p^s}\right)$

converges and

$$\frac{1}{S(s)} = \prod_{p \in P} \left(1 - \frac{1}{p^s}\right),$$

where P is the set of positive

primes $\{2, 3, 5, 7, \dots\}$

Proof: Since $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges absolutely for $\operatorname{Re}(s) > 1$, the prod

$\prod_{p \in P} \left(1 - \frac{1}{p^s}\right)$ also converges.

Fix s with $\Re s > 1$ if $\epsilon > 0$.

Let's choose N so large that

$$\left(\sum_{n=N+1}^{\infty} \frac{1}{n^s} \right) < \epsilon$$

Now $\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots$

$$\left(1 - \frac{1}{2^s} \right) \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \dots$$

$$\left(1 - \frac{1}{3^s} \right) \left(1 - \frac{1}{2^s} \right) \zeta(s) = 1 + \frac{1}{5^s} + \frac{1}{7^s} + \dots$$

This is a well-known

number-theoretic procedure known

as sieve of Eratosthenes.

$$\text{Show: } \left(1 - \frac{1}{(p_n)^s}\right) \cdot \left(1 - \frac{1}{(p_{n-1})^s}\right) \cdots$$

$$\left(1 - \frac{1}{2^s}\right) \zeta(s) = 1 + \frac{1}{(p_{n+1})^s} + \cdots$$

By the choice of N , if $n \geq N$ then:

$$\left| \left(\prod_{j=1}^n \left(1 - \frac{1}{(p_j)^s}\right) \right) \zeta(s) - 1 \right| < \epsilon.$$

as desired. Completing the

proof that $\frac{1}{\zeta(s)} = \prod_{p \in \mathbb{P}} \left(1 - \frac{1}{p^s}\right)$

Relation to the gamma function

for $\operatorname{Re}(z) > 1$

$$S(z) = \frac{1}{\Gamma(z)} \int_0^\infty dt \frac{t^{z-1} e^{-t}}{1 - e^{-t}}$$

proof: The integral converges for the same reason that the gamma function converges: For $j = 1, 2, \dots$

$$j^{-z} \int_0^\infty t^{z-1} e^{-t} dt \stackrel{(jt = t)}{=} \int_0^\infty t^{z-1} e^{-jt} dt$$

or

$$j^{-z} = \frac{1}{\Gamma(z)} \int_0^\infty t^{z-1} e^{-jt} dt$$

Summing over j gives

$$S(z) = \sum_{j=1}^{\infty} j^{-z} = \frac{1}{\Gamma(z)} \int_0^\infty dt t^{z-1} \sum_{j=1}^{\infty} e^{-jt}$$

thus: $S(z) = \frac{1}{\Gamma(z)} \int_0^\infty dt \frac{t^{z-1} e^{-t}}{1 - e^{-t}}$

for $\beta \in \mathbb{C}$, define the analytic function $u(w) = \frac{(f-w)^{\beta-1}}{1-e^{-w}} e^{-w}$

on the region $\mathbb{C} \setminus \{w : \operatorname{Re} w \geq 0, \text{ or } w=0\}$

the func is well-defined if we take $-\pi < \arg(-w) < \pi$. Also define, for $0 < \epsilon \neq 2\pi k$, Hankel func

$$H_\epsilon(\beta) = \int_{C_\epsilon} u(w) dw$$

where $C_\epsilon \supset C_\epsilon(\delta)$ is the Hankel contour shown below

The interpretation is the following:
 linear portions of the contour
 are understood to lie just
 above and just below the
 real axis (at distance δ), while
 the circular path is understood
 to have radius ϵ .

Notice that, for $0 < \epsilon_1 < \epsilon_2 < 2\alpha$

$H_{\epsilon_1}(\beta) = H_{\epsilon_2}(\beta)$ since the region
 bounded by $C_{\epsilon_1}, C_{\epsilon_2}$ contains no
 poles of u .

For $0 < \epsilon < 2\pi$ and $\operatorname{Re}(\beta) > 1$

we have

$$S(\beta) = - \frac{H_{\epsilon}(\beta)}{2i \sin(\pi \beta)} \frac{1}{\Gamma(\beta)}$$

As ω remains, $S(\omega)$ continues
analytically to $\mathbb{C} \setminus \{0\}$

Proof: Parametrizing C_ϵ :

$$H_\epsilon = \int_{-\infty}^{\tilde{\epsilon}} dt \left(1 - e^{-(t+i\delta)} \right)^{-1} \times \exp\left((\beta-1) \log(-(t+i\delta)) - (t+i\delta)\right)$$

$$+ \int_{\tilde{\epsilon}}^{\infty} (\text{same}) dt$$

integrand

$$+ \int_{\tilde{\delta}}^{2\pi - \tilde{\delta}} \frac{i\epsilon e^{i\theta}}{1 - e^{-\epsilon e^{i\theta}}} (-\epsilon e^{i\theta})^{3-1}$$

$$\times e^{-\epsilon e^{i\theta}} = I + II + III$$

Here $\tilde{\delta}$ represents the radian measure
of the initial point of the

circular portion of the curve C_ϵ and $\tilde{\epsilon}$ represents the value of the parameter at which the linear portion of the curve C_ϵ meets the circular portion.

Now for small ϵ ,

$$\left| 1 - e^{-\epsilon e^{i\theta}} \right| \geq \left| 1 - e^{-\epsilon} \right|$$

$\geq \epsilon/2$, thus

$$|III| \leq 2\pi \max \left| (\epsilon e^{i\theta})^{3-1} \right| \times \left| e^{-\epsilon e^{i\theta}} \right| \cdot \frac{\epsilon}{\epsilon/2}$$

$$\leq 4\pi \epsilon^{\operatorname{Re} \beta - 1} e^{-\theta \ln \epsilon} \epsilon \rightarrow 0$$

as $\epsilon \rightarrow 0$.

On the other hand, $I + II =$

$$\int_{\infty}^{\tilde{\epsilon}} dt \cdot (1 - e^{-t-i\delta})^{-1} \exp\left\{(\beta-1)$$

$$+ \left[\log \sqrt{t^2 + \delta^2} + i(\delta' - \pi) \right] - t - i\delta \right\}$$

$$+ \int_{\tilde{\epsilon}}^{\infty} dt \cdot (1 - e^{-t+i\delta})^{-1} \exp\left\{(\beta-1)$$

$$+ \left[\log \sqrt{t^2 + \delta^2} + i(\pi - \delta'') \right] - t + i\delta \right\}$$

where $\delta' = \delta'(t)$ and $\delta'' = \delta''(t)$

are chosen so that $(\delta' - \pi) \rightarrow (\pi - \delta'')$

as the args. of the initial and final points on the curve C_ϵ .

Note that the value of $H(\beta)$ is independent of $\delta > 0$ as long as δ is small - By uniform convergence we may let $\delta \rightarrow 0^+$ so that we may restrict ourselves to

$$\int_{\tilde{\epsilon}}^{\tilde{\epsilon}} dt (1 - e^{-t})^{-1} \exp\{(3-1) \log t - i\pi - t\} + \int_{\tilde{\epsilon}}^{\infty} dt (1 - e^{-t})^{-1} \exp\{(3-1) \log t + i\pi - t\}$$

$$= -\underbrace{(e^{i\pi} 3 - e^{-i\pi} 3)}_{-2i \sin(\pi 3)} \int_{\tilde{\epsilon}}^{\infty} dt \frac{t^{3-1} e^{-t}}{1 - e^{-t}}$$

As $\tilde{\epsilon} \rightarrow 0^+$, the integral becomes

$\Gamma(3) \beta^2$. Thus, we have shown

that $H(\beta) \stackrel{\sim}{=} \lim_{\epsilon \rightarrow 0^+} H_{\epsilon}(2) \stackrel{\sim}{=} -2i \sin(\pi \beta) \Gamma(\beta) / \beta$

for the remaining, note that

for w a positive real axis and $w > 1$

$$|\kappa(w)| \leq Aw^{\Re z - 1} e^{-w}, \text{ w/A} = A(3)$$

Thus, κ will be integrable over

C_ϵ for any $z \in \mathbb{C}$ and H_z will define

an entire function of z by diff. under

integral sign. Thus, $S(z) = \underbrace{-H_z(z)}_{2i \sin(\pi z) P(z)}$

defines an analytic continuation

of $S(z)$ to $\mathbb{C} \setminus \mathbb{Z}$. However, $S(z)$

is holomorphic at $z = 2, 3, 4, \dots$ and

on $\{z : \Re z > 1\}$. Moreover, the simple

poles of $P(z)$ at $z = 0, -1, -2, \dots$ cancel the

simple zeros of $\sin \pi z$ at these values.

Therefore, the Riemann removable singularities

Theorem implies that the denominator continues holomorphically to a nonvanishing function on $\{z : \operatorname{Re} z \geq 3/2\}$, except for a zero at $z=1$. In conclusion,

$S(z)$ continues holomorphically to $\mathbb{C} \setminus \{1\}$.

Simple pole at $z=1$

Let us now demonstrate that $S(z)$ has a simple pole at $z=1$ with residue 1.

for $z=1$, $\sin \pi z = 0$, so that

$$I + II = 0 \quad \text{and}$$

$$II = \int_0^{2\pi} d\theta \frac{e^{-\epsilon e^{i\theta}}}{1 - e^{-\epsilon e^{i\theta}}} i \epsilon e^{i\theta}$$

$$= \int_0^{2\pi} d\theta \frac{i \epsilon e^{i\theta}}{e^{\epsilon e^{i\theta}} - 1}$$

$$= \int_0^{2\pi} d\theta \frac{i\varepsilon e^{i\theta}}{(1+\varepsilon e^{i\theta}+R)-1}, \quad |R| \leq C \cdot \varepsilon^2$$

$$= \int_0^{2\pi} d\theta \frac{i\varepsilon e^{i\theta}}{\varepsilon e^{i\theta}+R} \stackrel{\varepsilon \rightarrow 0^+}{=} 2\pi i$$

As a result:

$$\lim_{z \rightarrow 1} (\beta - 1) S(z) = \lim_{z \rightarrow 1} \frac{-H(z)}{P(z)} \frac{\beta - 1}{2i \sin(\pi z)}$$

$$= \frac{-2\pi i}{1 - 2\pi i} = 1.$$

Q.e.d.

Functional Relation

We keep motivating ourselves to acquire more explicit information on the continuation of $S(z)$ to $\mathbb{C} \setminus \{1\}$. In keeping on this direction, let us derive the

functional relation

$$\zeta(1-z) = 2 \zeta(z) \Gamma(z) \cos\left(\frac{\pi}{2}z\right) (2\pi)^{-z}$$

We start by considering $z \in \{0, -1, -2, \dots\}$

Suppose $\operatorname{Re} z > 0$. Let $0 < \varepsilon < 2\pi$ and let n be a positive integer. The idea is to relate $H(z)$ to $H_{(2n+1)}\pi(z)$ using the calculus of residues and then let $n \rightarrow \infty$. Thus,

$$\frac{1}{2\pi i} \left[H_{(2n+1)}\pi(z) - H_\varepsilon(z) \right]$$

is the sum of residues of u in the region $\operatorname{Re} z = \{z : \varepsilon < |z| < (2n+1)\pi\}$.

The poles of u are simple: $\pm 2\pi k i$.

The residue at $\pm 2\pi k i$ ($k > 0$) is

$$\lim_{\omega \rightarrow \pm 2\pi k i} \left(\omega \mp 2\pi k i \right) \cdot \frac{(-\omega)^{z-1} e^{-\omega}}{1 - e^{-\omega}}$$

$$\text{But } \frac{(\omega \mp 2\pi k i)^{-\omega}}{1 - e^{-\omega}} \rightarrow 1$$

so the residue of u at $\pm 2\pi k i$ is

$$\lim_{\omega \rightarrow \pm 2\pi k i} (\omega)^{\beta-1} = (\mp 2\pi k i)^{\beta-1}$$

where we continue to use the principal branch of the logarithm. Hence, we have

$$\exp((\beta-1) \log(\mp 2\pi k i))$$

$$= \exp\left((\beta-1) \left(\log 2\pi k \mp \frac{i\pi}{2}\right)\right)$$

$$= \exp\left(\mp i(\beta-1) \frac{\pi}{2} (2\pi k)^{\beta-1}\right)$$

In summary,

$$H_{(2m+1)\pi}(\beta) - H_{\epsilon}(\beta) = 2\pi i \sum \text{of residues of } u \text{ in } \mathbb{R}_{\epsilon, n}$$

$$= 4\pi i \cos \frac{\pi}{2}(\beta-1) \sum_{k=1}^n (2\pi k)^{\beta-1}$$

Since

$$|U(\omega)| \leq A_3 |\omega|^{\operatorname{Re} z - 1} \frac{e^{-\operatorname{Re} \omega}}{1 - e^{-\omega}}.$$

So, on $\operatorname{Re} z > 0$:

$$\begin{aligned} -H_E(z) &= 4\pi i \cos\left(\frac{\pi}{2}(z-1)\right) (2\pi)^{z-1} \sum_{k=1}^{\infty} k^{z-1} \\ &= 4\pi i (2\pi)^{z-1} \sin\left(\frac{\pi}{2}z\right) \zeta(1-z) \end{aligned}$$

Therefore, $\zeta(z) = \frac{-H_E(z)}{2i \sin(\pi z)} \frac{1}{\Gamma(z)}$

$$= (2\pi)^z \frac{\sin\left(\frac{\pi}{2}z\right) \zeta(1-z)}{\sin(\pi z) \Gamma(z)}$$

$$= (2\pi)^z \frac{1}{2 \cos\left(\frac{\pi}{2}z\right)} \frac{\zeta(1-z)}{\Gamma(z)}$$

q.e.d.

The result follows for all z

by analytic continuation.

Finally, we observe that the functional equation provides us with an explicit way to extend the definition of $S(z)$ to all $\mathbb{C} \setminus \{1\}$.

Additionally, we can use the functional equation as a reflection formula, giving the values to the left of $\operatorname{Re} z = 1/2$ in terms of those to the right.

Another interesting relation

We can think of the Euler product formula the following: it tells us that, for $\operatorname{Re} z > 1$, $S(z)$ does not

vanish. Since $\Re \beta$ never vanishes, the functional equation says that $\zeta(1-z)$ can vanish for $\Re z > 0$ only at the zeros of $\cos\left(\frac{\pi}{2}z\right)$ i.e. $z = 1, 3, 5, \dots$

Therefore, we proceed to show that the only zeros of $\zeta(z)$ not in the set $\{z : 0 \leq \Re z \leq 1\}$ are $z = -2, -4, -6, \dots$

Let us start with the fact that, if we use the functional relation to calculate $\lim_{z \rightarrow 1} \zeta(1-z)$, we observe that

the simple pole of $\zeta(z)$ at $z = 1$ cancels the simple zero of the function $\cos\left(\frac{\pi}{2}z\right)$, so the function $\zeta(1-z)$

has no zero at $\Re z = 1$. However, for $\Re z = 3, 5, \dots$ the right-hand side of the functional eq. is a product of many finite-valued nonvanishing factors with $\cos(\frac{\pi}{2}z)$ so that

$$\zeta(1-z) = 0.$$

Since all the zeros of $\zeta(z)$, except those at $z = (-2)^n, n = 1, 2, \dots$, are in the strip

$$\{z : 0 \leq \Re z \leq 1\},$$
 it is known as the

critical strip. In connection with this,

The celebrated Riemann hypothesis

states that all nontrivial zeros of

$\zeta(z)$, i.e. $z \neq -2/n, n = 1, 2, \dots$,

lie on the critical strip

$$\{z : \Re z = \frac{1}{2}\}$$

Let us define die function

$$\Lambda: \{n \in \mathbb{Z} : n > 0\} \rightarrow \mathbb{R}$$

by $\Lambda(n) = \begin{cases} \log p, & n = p^k, p \in P, \text{ odd} \\ 0, & \text{otherwise} \end{cases}$

for $\operatorname{Re} z > 1$:

$$\sum_{n \geq 2} \Lambda(n) e^{-z \log n} = -\frac{\zeta'(z)}{\zeta(z)}$$

In order to realize that, let us first note that logarithmic differentiation of the Euler product formula yields

$$-\frac{\zeta'(z)}{\zeta(z)} = \sum_{p \in P} \frac{(1 - e^{-z \log p})'}{(1 - e^{-z \log p})}$$

$$= \sum_{p \in P} \frac{\log p e^{-z \log p}}{1 - e^{-z \log p}}$$

We can also expand $\frac{e^{-3 \log p}}{1 - e^{-3 \log p}}$

$$1 - e^{-3 \log p}$$

in a convergent series of powers of $e^{-3 \log p}$,

$$\text{i.e. } -\frac{\zeta'(3)}{\zeta(3)} = \sum_{p \in \mathbb{P}} \log p \sum_{k=1}^{\infty} (e^{-3 \log p})^k.$$

Since the convergence of the series is

absolute:

$$-\frac{\zeta'(3)}{\zeta(3)} = \sum_{k=1}^{\infty} \sum_{p \in \mathbb{P}} \log(p) e^{-3 \log p^k}$$

$$= \sum_{n=2}^{\infty} \Lambda(n) e^{-3 \log n}.$$

Holomorphicity: Let us prove that,

if Φ is holomorphic in a neighborhood

of $p \in \mathbb{P}$, if Φ is not zero, and

if $\Phi(p) = 0$, then $\frac{\Phi'(p)}{\Phi(p)} > 0$

for $z \in \mathbb{R}$ near p and to the right
of p .

Let's start by assuming

$$\Phi(z) = \alpha(z - \rho)^k + \dots, \quad \Re z > 1$$

such that $\Phi'(z) = k \alpha (z - \rho)^{k-1} + \dots$

and $\operatorname{Re} \frac{\Phi(z)}{\Phi'(z)} = \operatorname{Re} (k(z - \rho)^{-1} + \dots) > 0$

3-zeros at the boundary of the critical strip

Here we will demonstrate that $S(z)$ possesses no zeros at the boundary of the critical strip. By the functional eq., it is enough to show that there are no zeros on $\Im z : \operatorname{Re} z = 1$.

Suppose that $S(1 + it_0) = 0$ for some $t_0 \in \mathbb{R}$, $t_0 \neq 0$. Let us define

$$\Phi(z) = S^3(z) S^4(z + it_0) S(z + 2it_0)$$

We can observe that ϕ has a zero at $z=1$ since ζ^3 has a 3rd order pole at $z=1$ while ζ^4 has a zero of order at least four at $1+i\epsilon_0$.

But

$$\operatorname{Re} \frac{\phi(z)}{\phi'(z)} > 0 \text{ for } 1 < z < 1 + i\epsilon_0$$

for some $\epsilon_0 > 0$.

On the other hand, we have

$$\begin{aligned} \frac{\phi'(z)}{\phi(z)} &= \frac{3\zeta'(z)}{\zeta(z)} + 4 \frac{\zeta'(z+i\epsilon_0)}{\zeta(z+i\epsilon_0)} \\ &\quad + \frac{\zeta'(z+2i\epsilon_0)}{\zeta(z+2i\epsilon_0)} \\ &= \sum_{n>1} \Lambda(n) - 3 e^{-z \log n} - 4 e^{-(z+i\epsilon_0) \log n} \\ &\quad - e^{-(z+2i\epsilon_0) \log n} \end{aligned}$$

As a result, we have

$$\operatorname{Re} \frac{\phi'(x)}{\phi(x)} = \sum_{n \geq 2} \Lambda(n) e^{-x \log n} \Big| - 3$$

$$-4 \cos(\zeta_0 \log n) - \cos(2\zeta_0 \log n) \Big|$$

$$= \sum_{n \geq 2} \Lambda(n) e^{-x \log n} \Big| - 3 - 4 \cos(\zeta_0 \log n) \\ - (2 \cos^2(\zeta_0 \log n) - 1) \Big|$$

$$= -2 \sum_{n \geq 2} \Lambda(n) e^{-x \log n} (\cos(\zeta_0 \log n) \\ + 1)^2 \leq 0,$$

contradicting our initial assumption

that $\operatorname{Re} \frac{\phi'(x)}{\phi(x)} > 0$.